Tetrahedron Letters No. 20, pp 1713 - 1716, 1978. © Pergamon Press Ltd. Printed in Great Britain.

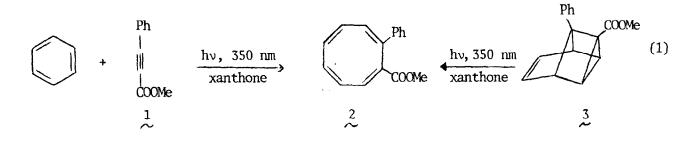
0040-4039/78/0508-1713. **\$**02.00/0.

PHOTOADDITION OF METHYL PHENYLPROPIOLATE TO BENZENE.

PHOTOCHEMICAL PREPARATION OF 1-CARBOXYMETHYL-8-PHENYLCYCLOOCTATETRAENE

Alois H. A. Tinnemans and Douglas C. Neckers* Department of Chemistry, Bowling Green State University Bowling Green, Ohio 43403

(Received in USA 12 December 1977; received in UK for publication 23 March 1978)


In the course of a recent series of studies of photoadditions of methyl phenylpropiolate 1 to fused heteroaromatic derivatives,^{1,2} it became necessary to synthesize 1-carboxymethyl-2-phenylcyclooctatetraene 2. As we have recently reported⁴ direct irradiation of 1 in benzene through Pyrex, gives methyl 5-phenyltetracyclo[$3.3.0.0^{2,4}.0^{3,6}$]oct-7-ene-4-carboxylate 3 (mp 74-75°)⁴, rather than the previously reported cyclooctatetraene.³

Thus 1 $(6.25 \times 10^{-3} \text{m})$ in benzene produces 3 (65-70%) when irradiated with a 450 W medium pressure mercury lamp through Pyrex for 72 hrs. Through quartz, however, at 95% conversion, 2 (38%) is produced as well as 3 (62%). Direct irradiation of 3 gave cyclooctatetraene 2 (24%), along with methyl phenylpropiolate (35%), when 3 was irradiated through quartz. At 253.7 nm with low pressure mercury resonance lamps the ratio 3/2 drops further. At 72% conversion 2, about (40%) is found among the products as well as 3 (32%).

The desired cyclooctatetraene 2 could be obtained exclusively (92%), however, from triplet sensitized irradiation of 3 at 350 nm with high energy sensitizers or from the sensitized reaction of 1 with benzene (eq. 1). In fact, this is the experimental method of choice for preparing the cyclooctatetraene. At incomplete conversions of 1, however, small amounts of 3 also could be detected in the crude reaction mixture.

The preparation of 2 was carried out in the following way. A solution of 490 mg (2.06 mmol) of 3, and 300 mg (1.53 mmol) of xanthone in 650 ml nitrogen degassed benzene was irradiated in a Rayonet reactor equipped with 16 350 nm lamps for 40 hrs. When the starting material had been completely consumed, as shown by nmr, the solvent was removed on a rotary evaporator. The chromatographed product 2 (452 mg, 92%) exhibited the same spectroscopic properties as a sample obtained by pyrolysis⁴ of 3 at 180° .

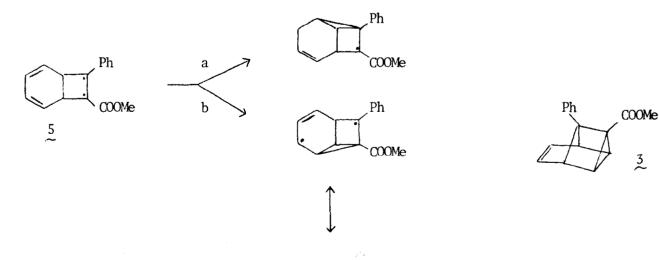
A solution of 620 mg (3.87 mmol) of 1 and 500 mg (2.55 mmol) of xanthone in 650 ml nitrogen degassed benzene was irradiated as above for 68 hrs. After work-up as above, 588 mg of 2 (65%) was isolated.

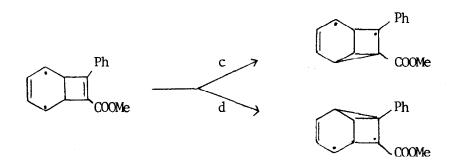
On irradiation of a solution of 1 in benzene in presence of the sensitizer benzophenone at 350 nm both 2 and 3 are obtained. The 2/3 ratio strongly depends on the amount of sensitizer used. At relatively high concentrations of benzophenone the amount of $\frac{2}{2}$ increased, suggesting that the reverse reaction $2 \rightarrow 3$ (via 4) is not operative. Control experiments confirmed this result. Under the conditions described above 3 appears to be photostable upon irradiation, Table I.

Table I.	Direct and	sensitized	irradiations	of	1,	2,	and 3	under	different	conditions.

	starting ial x 10 ³ M	Method	Time Hrs.	Sens. x 10 ³ M	1	2	ratio (%)
1	7.5	А	15		no reaction		
1	7.5	А	15	1.5 ^a	5	90	5
1	19.2	А	27	3.9 ^a	41	50	9
1	7.5	А	21	7.5 ^b	10	43	47
1	6.3	В	72		19 ^C	none	55 ^C
1	10.2	В	20		72		28
1	10.2	С	6		trace	38	62
1	31.2	С	15		45	15	40
1	1.9	D	5		28	39	33
2	1.0	В	42		none	none	90 ^C
2	1.0	С	22		14	37	49
3	2.5	А	76	3.0 ^a		95	5
3	3.2	А	40	2.3 ^a	none	92 ^C	none
3	2.5	А	48	3.3 ^b			no reactio
3	1.2	С	20		35	24	41
benz isol meth	od B: immer	sensitize ; method A rsion well	A: Rayo Lappara	tus throug	r fitted with h Pyrex with 4 od B but throu	50 W m	edium press

The photoaddition of 1 to benzene likely proceeds by way of a bicyclo[4.2.0]octa-2,4,7-Such an intermediate has been isolated in the photoaddition of phenylacetylenes triene 4.


to hexafluorobenzene.⁵ Unless $\underbrace{4}_{2}$ rearranges to $\underbrace{3}_{2}$ by an energy transfer process, $\underbrace{4}_{2}$ must live long enough to absorb a second photon in competition with residual 1 in the direct irradiation.



This photochemical process must also compete with the thermal and/or photochemical ring opening leading to 2. Surprisingly, no 2 could be detected at low conversions from 1 or at 50° , where we expect the thermal ring opening of 4 to be very efficient. Therefore, all the cyclooctatetraene thermally and/or photochemically formed must be very efficiently converted into 3 under the reaction conditions.

From the sensitized experiments it is clear that $\underline{4}$ is formed from triplet $\underline{1}$ ($E_T < 69$ kcal mol⁻¹) and ground state benzene, in accordance with quenching studies for the addition of \underline{t} -butylphenylacetylene to hexafluorobenzene.⁵ Since $\underline{4}$ absorbs no light directly, the formation of 3 from 4 also proceeds via a triplet state.

We suggest the following pathway for obtaining 4 \rightarrow 3, based on the presumption that an appreciable concentration of 4 accumulates.⁶ Triplet 4 (E_T < 69 kcal mol⁻¹) can undergo bond formation in four different ways (a-d). In view of biradical stability arguments a and d are unlikely.

Since di- π -methane rearrangements of the biradicals 5 and 6 lead to semibullvalenes,⁷ by energetically less favorable processes 3 is the preferred product.

Low temperature experiments designed to elucidate further these processes are in progress.

Acknowledgment

This work has been supported in part by the National Science Foundation and the Petroleum Research Fund, administered by the American Chemical Society.

References

- 1. A.H.A. Tinnemans and D.C. Neckers, J. Org. Chem., in press
- 2. A.H.A. Tinnemans and D.C. Neckers, J. Org. Chem., 42, 2374 (1977)
- 3. D. Bryce-Smith, A. Gilbert and J. Grzonka, <u>Chem. Comm.</u>, 498 (1970); Professor Bryce-Smith has informed us that his reaction mixture was separated by preparative gas chromatography. At the temperature of the chromatograph 3 would revert thermally to 2.
- 4. a. A.H.A. Tinnemans and D.C. Neckers, <u>J. Amer. Chem. Soc.</u>, <u>99</u>, 6459 (1977)
 b. A.H.A. Tinnemans and D.C. Neckers, <u>Org. Synthesis</u>, submitted for publication
- 5. B. Sket and M. Zupan, J. Amer. Chem. Soc., 99, 3504 (1977)
- 6. Its half-life is supposed to be comparable with that of the unsubstituted bicyclo [4.2.0] triene (t¹₂ = 14 min., 0^oC): E. Vogel, H. Keifer and W.H. Roth, Angew. Chem. Int. Ed. Engl., 3, 442 (1964)
- 7. The conversion of cyclooctatetraene to semibullvalene required higher energy sensitizers than benzophenone or acetophenone.⁸ Conversion of 4 to 3 sensitized by benzophenone is likely since E_T of 4 is likely lowered by the substituents, Ph and COOMe.
- 8. H.E. Zimmerman and H. Iwamura, J. Amer. Chem. Soc., 90, 4763 (1968)